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Abstract. Fractals (natural or man-made) are objects possessing detail at all scales. One of their 

attractions is the ability to reproduce natural objects, from mountains to cellular structures, but fractals 

have also been founded in several human artefacts, such as, in decorative geometric patterns, in 

architectural strucutres and in the layout of cities. Therefore, it is not surprising that the study of fractals 

has become mainstream in science and engineering, but that their applications have also been extended to 

the social sciences, music and architecture. In architecture, fractals and related tools can be used in two 

ways. On the one hand, fractals can be a feature of the architectural design, on the other hand, fractal 

methods can be used to the  characterization of existing structures. The main purpose of this article is to 

provide a brief introduction to fractals, with an emphasis on the distinction between different categories 

(self-affine versus self-similar and deterministic versus statistical) while, simultaneously, providing an 

overview of the application of fractals in different fields. One of the implications of fractal studies, 

partially because of their ability to unify disparage disciplines, is that we have now the tools to start 

understanding the characteristics of the environments that best adapt to our needs. I end with a brief note 

on fractals and modern architecture, and how fractals alone are not enough to guarantee the desirable 

qualities of good architectural design. 
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1.        Introduction 

Fractals are everywhere and fractal geometry can connect disparate disciplines. Fractals 

open a new vision and understanding of the world, not only of natural phenomena but 

also of man-made objects and phenomena. Here I review different categories of fractals, 

and how fractals have emerged in a wide variety of disciplines, from history to music 

and painting, and, of course, architecture, and, more importantly, how fractals unify 

these disciplines. 

Fractal geometry is an extension of, but also a departure from, traditional Euclidean 

geometry. Thanks to fractal geometry we came to realize the inadequacy of Euclidean 

geometry to deal in a satisfactory way with some natural phenomena or even man-made 

objects. As Mandelbrot (1983), the father of fractals, put it: “Clouds are not spheres, 

mountains are not cones, coastlines are not circles, and bark is not smooth, nor does 

lightning travel in a straight line”. What the objects in this now famous sentence have in 
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common is that they are not “smooth”, they are characterized by shapes that are “grainy, 

hydralike, in between, pimply, pocky, ramified, strange, tangled, tortuous, wiggly, 

wispy, wrinkled” (Mandelbrot, 1983). The objective of fractal geometry is to provide 

tools to deal with the “roughness” of real objects and phenomena that until recently 

could only be dealt with in a rather contrived way because of the limitations of 

traditional geometry. Not surprisingly, one the most publicized characteristic of fractals 

is their ability to accurately reproduce a wide range of natural objects. 

It would be a mistake to assume that fractal geometry has only found a role in 

describing physical “palpable” objects. Fractals also been important in revealing 

features of a wide variety of phenomena, such as, to show the commonalities of 

different musical genera (e.g., Hsü, 1993), to quantify the perceived visual differences 

among the works of artists such as Pollock (e.g., Taylor et al., 1999) or between 

buildings of different architects, such as, those by Frank Lloyd Wright and Le Corbusier 

(e.g., Bovill, 1996). The realization that fractals structures are present in both natural 

and man-made structures has had important implications, in particular with regard to 

how we perceive our surrounding environments. In this respect, experiments in 

psychology have revealed that images with fractal characteristics helped reduce the 

stress of the participants when these had to perform demanding tasks (e.g., Taylor 

2006).  

One of the aims of this review is to provide an introduction to fractals, to show how 

they can be generated and how they can be measured. This review should be seen as a 

guide that can be used to interpret fractal-like objects. Accordingly, I will describe the 

following categories of fractals: first, self-similar and self-affine and, second, 

deterministic and statistical fractals. I chose these categories because they are the ones I 

use to describe in a first qualitative way an object that I hint to have fractal attributes. I 

emphasize this is not a mathematical review on fractals, but I hope it provides an entry 

point for those interested in fractals before moving on to more specialized literature.  

2.      What are fractals? 

Interestingly, Mandelbrot, the father of fractal geometry, was reluctant to provide a 

precise definition of fractals. A non-mathematical definition by Mandelbrot (1975) is: 

“Fractals are mathematical objects, whether naturally or human made, which can be 

described as irregular, coarse, porous or fragmented, and which, furthermore, possess 

these properties to the same extent on all scales.” Here too, I will not give a precise 

definition of fractals, instead, I describe different categories of fractals that according to 

my experience are the most relevant to identity and interpret natural and man-made 

fractals.  

Two important categories are the self-similar and self-affine fractals. The self-similar 

fractals are the most famous ones; Fig. 1 provides an example, called the Sierpinski 

carpet. Typically, to obtain a fractal there is an algorithmic process that evolves 

repetition. For example, to obtain the Sierpinski carpet apply the following algorithm: 

(i) start with a square and divided it into 9 squares, (ii) remove the central square, (iii) 

repeat the above two rules to all remaining squares, and (iv) keep iterating these 

procedures the desire number of times. In the idealized mathematical version these 

iterations are done an infinite number of times. The salient point here is that the 

repetitive process leads to an important feature of fractals: the existence of detail at all 

scales. In the case of self-similar fractals, the construction process is such that parts of 
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the fractal object are identical at different scales. When this happens, the size of a 

portion of the fractal cannot be determined unless there is a reference to which it can be 

compared. This makes these fractals ideal to perform (willing or unwillingly) visual 

tricks. In order to avoid such tricks, and because geological objects, such as rocks, tend 

to exhibit fractal characteristics, geologists usually include in a photograph an object of 

known size, such as a hammer or a compass, to ensure that the size of the geological 

structure can be approximately determined (e.g., Holmes 1965). Notice that this practice 

long predates the formal introduction of fractals, revealing that the notion of self-

similarity has long been perceived. 

 

Figure 1. The first four iterations of the Sierpinski carpet, a self-

similar fractal 

 

In contrast to self-similar fractals, self-affine fractals appear different depending on the 

scale at which they are observed. A good example is a range of mountains, or the 

silhouette of a city like New York, at least the borough of Manhattan. When seen from 

far way, a mountain range looks almost like a straight line in the horizon, but when one 

gets closer the different peaks becomes more noticeable. Similarly, from far way 

Manhattan looks a relatively flat line, but the difference among the heights of the 

buildings becomes more obvious when viewed more closely. Figure 2 provides an 

example that one can thing of as a mountain chain that is being approached when 

moving from the plot a to plot c. However, to understand the construction of this self-

affine fractal one should progress from plot c to plot a. Plot c is the “generator” of the 

fractal. This generator is made of 4 segments of equal size. In order to obtain plot b 

substitute each of the four segments in plot c by a smaller replica of the generator. 

Finally, to obtain plot a we substituted each of the 16 segments in plot b by an even 

smaller version of the generator. (Of course, one could continue this iteration process 
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indefinitely.) What characterizes the construction of this fractal is that it is “stretched” 

differently along the vertical and horizontal directions, in contrast to a self-similar 

fractal where both directions are treated equally. In a sense, self-similar fractals are just 

a particular case of self-affine fractals where the “stretching” is equal in both directions. 

 

Figure 2. Example of a self-affine fractal. Imagine these figures as a 

mountain being seen progressively closer when moving from the top 

to the bottom plot. However, to understand the construction it is easier 

to progress from plot c to plot a 

Another important distinction is between deterministic and statistical fractals. 

Deterministic fractals are obtained when we repeatedly iterate a rule without allowing 

chance events to occur. For instance, the Sierpinski carpet, Fig. 1, and the self-affine 

“mountain”, Fig. 2, are deterministic fractals. Statistical fractals are obtained when we 

introduce randomness in the process of the fractal formation. Consider the curves on the 
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left-hand side of Fig. 3; these shows the first stages of the (fractal) Koch curve, still a 

deterministic fractal. Its rules of formation are: (i) start with a segment and divide it into 

3 segments (top line of Fig. 3a), (ii) remove the central segment and substitute it by two 

other segments forming a triangle (second line on Fig. 3a), (iii) keep applying the two 

previous rules to the remaining segments. In order to obtain the equivalent statistical 

version, we add chance events using, for instance, a coin. Let us assume that “heads” 

means the “triangle” substituting the removed segment is pointing “up”, and “tails” 

implies the “triangle” is pointing “down” (I’m using inverted commas for “up” and 

“down” because after a few ietrations up and down are no longer the best way to 

describe where the triangle is pointing to). As before, we started with a segment, 

divided it into 3 segments and removed the central one, but now we flipped a coin in 

order to define if the substituting triangle is pointing up or down. The result was 

“heads”, so the triangle is pointing up (in this case, at this iteration level we obtained 

exactly the same curve as in the deterministic case). In the next stage, and as before, we 

divided the four remaining segments into three, but flipped a coin four times in order to 

determine the direction of the triangles. We obtained “tail”, “head”, “tail” and “tail”, 

hence the substituting triangles are pointing “down”, “up”, “down” and “down”, the 

third line from the top in Fig. 3b. The other lines in Fig. 3b show the result of applying 

the same procedure at other stages of the Koch curve. Compare the bottom lines of Fig. 

3a and 3b: while the deterministic fractal shows clearly the algorithm used to obtain it, 

the statistical one looks more “natural”, closer to what one could expect from a natural 

object, such as the contour of a cloud. Incidentally, this capability of fractals to 

reproduce natural objects has not escaped Hollywood’s attention, which soon began to 

use fractal techniques in filmmaking (e.g., Barnsley et al., 1988, or Peitgen & Saupe, 

1988).  

 

Figure 3. The Koch curve, on the left hand side, the first four stages 

of the deterministic version, and on the right hand side the four stages 

of a concretization of the random (statistical) version 
 

Often, fractals are not enough to describe an object. In fact, most real objects are 

multifractals. In these cases, an object is not defined solely by one fractal dimension, 

but by a spectrum of fractal dimensions (e.g., Borda-de-Água et al., 2007). The basic 

difference between fractals and multifractals is that the former pay attention only to the 



NEW DESIGN IDEAS, V.4, N.2, 2020 

 

 
74 

 

presence or absence of a given feature, while the latter consider, in addition, the relative 

amount of that feature. For example, to obtain the (fractal) Sierpinski carpet we simply 

removed squares, thus the final structure is black and white. On the other hand, in a 

multifractal Sierpinski carpet  the squares also have associated a “weight”. To obtain a 

deterministic multifractal we perform what is called a “multiplicative cascade”. For 

instance, to obtain a multifractal Sierpinski carpet we start with a “generator” with 

weights (such as numbers between 0 and 1) assigned to each square. We can imagine 

that these weights represent different shades of grey as in Fig. 4a. Notice that because 

the central square of the generator has weight zero, the entire structure is still like the 

Sierpinski carpet. In each iteration the values in each of the squares are multiplied by 

the “generator”. For example, the first iteration corresponds to the generator itself. 

Then, in the second iteration the top left square, that has a value of 0.07, is multiplied by 

the generator, resulting into nine squares whose values (and grey shades) corresponding 

to 0.07 times the values defined in the generator. Equally, the central square on the top 

row, with value 0.05, is multiplied by the generator leading to another nine squares with 

values (and grey shades) corresponding to 0.05 times the values defined in the 

generator. This process is repeated to all remaining squares finishing the second 

iteration. We can now re-start this procedure to get the third iteration, et seq. The 

resulting multifractal after four iterations is shown in Fig. 4b. 

 

Figure 4. Example of multifractal using the Sierpinski carpet as support. Plot (a) 

shows the generator, where the numbers correspond to the weights assign to each 

square and the darker and lighter regions correspond to higher and lower weights, 

respectively. Plot (b) shows the resulting Sierpinski multifractal carpet after 4 

iterations – compare it with the Sierpinski fractal of Fig. 1. 
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3.      Quantifying fractals 

The above description of fractals was merely qualitative. However, fractals can be 

characterized quantitatively by extending the notion of dimension to non-integer 

numbers. Such non-integer dimensions are called fractal dimensions, and an important 

part of the literature on fractals is on the development of methods to estimate fractal 

dimensions. A very simple method is called box-counting and, to the best of my 

knowledge, it is the only one that has been used to characterize architectural features, as 

we will see later.   

The concept of a non-integer dimension may sound strange at first. To obtain an 

intuitive understanding of a non-integer dimension, consider a line in a surface. In 

Euclidean geometry a line has (always) dimension 1. In fractal geometry a line 

embedded in a surface has a fractal dimension between 1 and 2, depending on how it 

“occupies” the surface: “1” corresponds to a smooth line (straight or curved) and “2” to 

the limit of a line so compact and convoluted that it becomes a surface. Identically, in 

Euclidean geometry a surface has (always) dimension “2”, but in fractal geometry a 

corrugated surface has fractal dimension between 2 and 3, the latter being a surface that 

completely fills the space. 

The proper mathematical definition of fractal dimension involves the concept of a limit 

to zero or to infinity, depending on how we set the scaling factor (e.g., Mandelbrot, 

1975, 1983). In this sense, real objects are never truly fractal, one can only expect that 

they are approximately fractal within a range of scales, from where we can estimate the 

(approximated) fractal dimension. As mentioned before, one approach to estimate the 

fractal dimension is the “box counting” method. In two dimensions it consists of 

covering an object with squares (“boxes”) of different sizes, count how many squares 

are required to cover the object, and then repeat this process for squares of different 

size. For example, assume that the object under study is a set of points, as in Figure 5. 

To apply the box-counting method, start with a mesh of a given size (plot 5a), cover the 

points and count who many squares contain at least on point; in this example it is 19 

squares, as shown in plot 5b. As always with fractals, there is a repetitive process 

applied at different scales. Accordingly, the next steps of the box counting method 

consist of repeating the process of covering the points with meshes of different square 

sizes, and for each mesh size count how many squares contain at least one point. Once 

this has been done at different scales, the number of occupied squares is plotted as a 

function of their linear size (the length of the side of a square) in a double logarithmic 

plot. If the object is a fractal, a straight line should emerge, and the slope of this line is 

equal to the negative value of the (box-counting) fractal dimension, plot 5c. (Fig. 7 

below provides an example of the application of the box-counting method  to the front 

elevation of two buildings.) Although simple to apply, box-counting is rarely practical, 

because for very large boxes all the squares are occupied, leading to a dimension equal 

to 2 (that of a surface), and for very small boxes the number of occupied squares 

remains constant and equal to the number of points; the implication of this is that the 

range of values from where the fractal dimension can be estimated tends to be very 

small.  

For multifractals instead of one fractal dimension there is a “spectrum of dimensions”. 

To calculate the spectrum for the distribution of points of Fig. 5 we would need to 

consider the proportion of points falling into each square and not merely their presence 
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or absence. For more details and for alternative methods to estimate the fractal 

dimension see, e.g., Borda-de-Água et al. (2007). In the section “Fractals everywhere” I 

will describe another very simple method to estimate the fractal dimension of a line. 

 

Figure 5. The box-counting method. Plot a shows the mesh of squares used to cover 

the set of points and plot b shows the squares that contain at least one point. Plot c 

illustrates the (idealized) straight line after the application of the box-counting 

method, from where the slope of the line and then the (box-counting) fractal 

dimension, D, is estimated 

 

4.      Fractals Everywhere 

The main purpose of this section is to review the application of fractals to a wide range 

of scientific disciplines and the insights that studying fractals have brought to the 

understanding of human psychology. The title of this section is an allusion to the book 

by Barnsley (1988), but interpreting here “everywhere” not only as fractals being 

physically present everywhere but as well as a phenomenon present in a wide variety of 

disciplines. We start with an example that has, at least partially, roots in history. 

(Dotsenko (2020) provides other examples of applications of fractals.) 

History. A now classic example of a fractal is the length of the border between Portugal 

and Spain. Richardson (1961) observed a rather different estimate depending on 

whether the source was Portuguese or Spanish: while the Portuguese claimed a size of 

1,214 km, the Spanish mentioned only 987 km. This difference was likely due to the 

choice of the size of the “rulers” used to estimate the border’s length, as Fig. 6a 

illustrates. The Portuguese, by choosing a smaller sized ruler, could follow more closely 

the real border and, hence, obtained a larger length; I decline to speculate why the 

Portuguese and the Spanish chose “rulers” of different sizes. Furthermore, Richardson 

noticed that if other measurements based on other rulers’ size were added, they would 
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fall approximately on a straight line when plotted a log-log graphic, Fig. 6b. This 

example was later picked up by Mandelbrot (1983), who pointed out that the emergent 

straight line in a log-log plot is what one should expect from a fractal curve, and that the 

slope of the straight line is an estimate of the fractal dimension.  

Often, the border between two countries is a river, and rivers meanders are known to 

have fractal geometries, but in other cases, even when there are no clear natural 

boundaries, borders can be very convoluted, as in the case of the border between 

Portugal and Spain, reflecting the turbulent history between the two countries. Compare 

the shape of Portuguese-Spanish border with the perfect straight line of the west portion 

of the border between the United States and Canada, which resulted from a peaceful 

agreement between the two countries. 

Incidentally, this example also helps show that even when measures at different scales 

exhibit different values, an underlying invariance can still be found, and it is this 

invariance that we are often interested in; see Borda-de-Água (2019) for more details. In 

the above case, rulers of different sizes led to borders of different lengths, however, 

when these lengths were plotted in double logarithmic scales a straight line emerged, 

implying a constant slope, from where the fractal dimension (the invariance) was 

estimated. 

 

Figure 6. An example of measuring the border between Portugal and Spain using 

rulers of two different sizes (plot a), and the line formed by plotting several 

measurements in a log-log graphic (plot b) 

 

Music. Voss and Clarke (1975, 1978) showed that the power spectrum of the loudness 

of very different musical styles, from Bach’s Brandenburg Concertos to jazz, blues and 

rock, showed a distinct distribution that is typical of fractals. This topic was further 

developed by Hsü (1993) who pointed out that even bird songs display fractal like 

patterns. In contrast, Hsü (1993) showed that Stockhausen’s Capricorn (1977), a 

modern music composition, did not exhibit the typical distribution of fractals. 
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Painting. Taylor et al. (1999) showed that the fractal dimension of Jackson Pollock’s 

drip paintings increased consistently over time, going from a fractal dimension of 

approximately 1 in 1943 to approximately 1.72 in 1952. Kim et al. (2014) analysed the 

mathematical patterns of paintings of several historical periods of western paintings 

from the Middle Ages to the 20th century, and found a consistent fractal pattern, but 

with historical periods characterized by different fractal dimensions; for example, 

Pollock’s drip paintings had a fractal dimension similar to that of the Middle Ages 

paintings but significantly inferior to that of the other historical periods analysed. 

Architecture and urbanism. In the field of urbanism Batty and Longley (1994, page 2) 

pointed out that “[p]lanned cities are cast in the geometry of Euclid but by far the 

majority, those that are unplanned or planned less, show no simplicity of form”. More 

recently, Chen (2009) showed that cities are, in fact, self-affine fractals, revealing 

different growths along different directions. In a work with also sociological 

implications, Wong et al. (1999) used fractals methods to describe the spatial 

segregation (e.g., racial) in 30 US cities. 

Fractal-like patterns have been used in the design of buildings and other human artefacts 

(Bovill 1996). That being the case, one can assume that fractals can be used to 

characterize buildings of different styles and periods. For example, Bovill (1996) and 

Ostwald et al. (2015) analysed the the front elevation of the Robie house (Frank Lloyd 

Wright) and of the Villa Savoye (Le Corbusier) and showed that the former has a higher 

fractal dimension than the latter. Fig. 7 shows the application of the box-counting 

method at different scales of resolution to the estimation of the fractal dimensions of 

works by Frank Lloyd Wright and Le Corbusier (but see below my interpretations of 

these “fractal dimensions”). Ostwald et al. (2015) repeated the analysis using a more 

thorough analysis and reduced (but did not eliminate) the difference between the fractal 

dimensions of the two works, and a similar analysis performed by Wen and Kao (2005) 

were also able to discriminate the fractal dimensions of works by Frank Lloyd Wright, 

Le Corbusier and Mies van der Rohe. When applied to an architectural composition, the 

interpretation of the fractal dimension is that it is a measure of the detail at different 

scales, with a higher dimension revealing a higher level of detail. As Bovill (1996) put 

it: “The fractal characteristic of an architectural composition presents itself in this 

progression of interesting detail as one approaches, enters, and uses a building.”  

However, I should add the caveat that I do not think the front elevation of the above 

buildings is fractal (not even in an approximate way) for the following two reasons. 

First, authors used the box-counting method, and this method usually leads to a very 

small scaling region and very unreliable estimations of fractals characteristics, as 

discussed before. Second, and more importantly, I do not think the front elevation of 

these building have enough details at a range of scales that allows them to be called 

fractal. Nevertheless, these are just minor technical details, and I still found interesting, 

and important, to observe that techniques developed to analyse fractals can help 

quantify features that somehow agree with our intuitive perception of the designs.  
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Figure 7. Example of the estimation of the fractal dimension using the box-counting 

method of the front elevation of (a) Robie house (Frank Lloyd Wright) and of (b) the 

Villa Savoye (Le Corbusier). Bovill (1996) found more than one scaling region, but 

fractal dimensions of the Robie House were consistently larger than those the Villa 

Savoye. [After Bovill (1996)] 

 
 

5.      Fractals and the critics of “modern” architecture 

Somehow implicit in the research on music and bird songs mentioned above is that 

humans have an innate tendency to copy patterns that are present in nature and that, 

thanks to fractals, patterns that were being reproduced unconsciously are now being 

uncovered and identified by science (e.g., Voss & Clarke, 1975, 1978; Hsü, 1993, Van 

Tonder et al., 2002).  

The relationship between the environment where our species evolved and some built-in 

preferences, that at a deeper level may be independent of an individual culture, was put 

forcible by Dutton (2009). I believe that such hypothesis of universals on human 

aesthetic preferences, undoubtedly controversial, provides a link between topics often 

kept in the realm of the humanities and of the natural sciences, with fractals providing a 

methodological approach to attain such a link. Indeed, the universality of aesthetic 

preferences is a recurrent theme in articles and books on fractals. For instance, 

Dauphiné (2012) states that 

When a group of people are asked to classify landscape 

images according to their beauty, responses show that 

regular, homogeneous landscapes and highly irregular 

landscapes are never picked out as being the most 

beautiful. People who are constantly questioned attribute 

great beauty to landscapes with intermediate irregularity. 

This mix of regularity, which is calm and secure, and 

a b
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irregularity, which is synonymous with anomaly and 

surprise, can be measured using a Hurst coefficient or a 

fractal dimension (Dauphiné, 2012, p.179). 

Given that fractals are a paradigm of a mathematical approach that can reproduce 

faithfully natural objects, it is not surprising that fractals are mentioned in a criticism 

involving lack of naturalness, in particular about modern architecture (e.g., Alexander 

(2002) or Salingaros (1997, 2006)). Mandelbrot (1981) himself set the scene when he 

wrote that 

It is often said that 20th-century “modern” buildings are 

sterile, not built to human scale and, in fact, unnatural. 

or in his famous book “The fractal geometry of nature” (Mandelbrot, 1983) when he 

stated that: 

The fractal “new geometric art” shows surprising kinship 

to Grand Master paintings or Beaux Arts architecture. An 

obvious reason is that classical visual arts, like fractals, 

involve very many scales of length and favor self similarity 

[…]. For all these reasons, and also because it came in 

through an effort to imitate Nature in order to guess its 

laws, it may well be that fractal art is readily accepted 

because it is not true unfamiliar. Abstract paintings vary on 

this account: those I like tend to be close to fractal 

geometric art, but many are closer to standard geometric 

art - too close for my own comfort and enjoyment. […] A 

Mies van der Rohe building is a scale bound throwback to 

Euclid, while a high period Beaux Arts building is rich in 

fractal aspects.  

The answer to the important question of why we should strive for fractal-like structures 

in architecture can probably be found in some intriguing studies on how human reacts to 

fractals (Taylor, 2006; Joye, 2007; and references therein), although these were not 

originally targeted at studying architectural features. For instance, in the 1980s NASA 

carried experiments to determine how to reduce stress in astronauts participating in long 

missions, such as, manned missions to Mars (Taylor, 2006). In these studies, 

participants were asked to performed several tasks, such as, arithmetic calculations, that 

are known to induce physiological stress, while observing different images. These 

experiments were conducted by measuring physiological parameters and not by 

assessing verbal or written preferences, therefore, using solely uncontrolled responses of 

the participants. The main result was that compared to a control non-fractal image, 

fractal images led to the reduction of stress levels. Moreover, researchers found that the 

reduction was higher for middle-range fractals, those that have a fractal dimension close 

to 1.5, that is, way from a smooth line (D=1) or a surface (D=2). As a justification to 

these results, Taylor (2006) points out that middle-range fractals are common in nature, 

such as in the contour of clouds or coastlines, indicating that this type of fractals are “a 

central feature of our daily visual experience”. Notice, however, that in order to reduce 

stress the images did not need to be of natural objects or landscapes, they just needed to 

have fractal attributes that mimic those observed in natural objects, thus leaving space 

for a wide variety of forms, including abstract ones. The important point is “we have 
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here the beginnings of a new way of interpreting how the visual environment affects our 

health” (Salingaros, 2012); and see also Sussman and Hollander (2015) or Ruggles 

(2017) where the authors explore the connections between architectural composition, 

how we perceive it, and neuroscience. 

The previous paragraphs dealt with the absence, or reduction, of fractal attributes in 

some architectural compositions, and how that it can be detrimental to our health. 

However, I do not think that the application of fractals alone will ensure a sounded final 

architectural product. In fact, I have found buildings whose design is based on fractals 

that I can only describe as hideous. See, for instance, Fig. 8, a photo of a façade clearly 

inspired by the Sierpinski carpet (Fig. 1) but, in my opinion, with a rather poor result. 

Nor do I think that the inclusion of a fractal pattern as a decorative motif can alone be 

enough to bring the desire quality to the entire architectural composition. Consider, for 

instance, the fractal pattern based on the proportions of the golden rectangle suggested 

by Cecil Balmond to decorate a Daniel Libeskind’s project in South Kensington, 

London (e.g., Langdon, 2015). According to Langdon, this fractal pattern would have 

“attempt[ed] to channel an energy that is cosmic and infinite”. Unfortunately, I do not 

know what “energy that is cosmic” means, except for some esoteric (hence, pseudo-

scientific) connotations, and I honestly do not see how such “infinite” form of energy 

would have benefited the workers, visitors and neighbors of the building, had it been 

built. Instead of this type of vague (and to me incomprehensible) language, I would 

rather have seen the results of tests similar to those described above conducted by 

NASA, where the stress levels of the participants were compared after performing a 

demanding task while facing the fractal of “infinite cosmic energy” and, say, the façade 

of other buildings in South Kensington.  

In conclusion, although I think that the application of concepts from fractal geometry 

may be necessary for sounded architectural compositions, they are definitely not 

sufficient. For example, some basic respect for the traditions of a region and historical 

architecture of the already existing buildings seems to be a basic requirement. Other 

rules, such as the ones developed by Christopher (1977) (and see also Salingaros, 2006) 

are likely to be essential. Nor do I think that the adherence to strict formal fractal 

patterns, such as the Sierpinski carpet, is desired. If I had to identify the most valuable 

lesson from fractals to architecture, it would simply be the importance of detail at 

different scales. 

6.      Concluding remarks 

This review had three main aims: first, to provide a brief description of different 

categories of fractals that are important to identify and characterize natural and man-

made structures, second, to show that fractals are everywhere and, third, that fractal 

geometry is a tool that can unify disparate disciplines with important implications for 

the way we perceived and related to our environments. 
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Figure 8. A façade clearly inspired by the Sierpinski carpet (compare 

it to Fig. 1), but hardly a good example of application of fractals in 

architecture. [Photo by the author] 

 

One of most intriguing aspects of fractal geometry is its ability to produces visual 

images that are astonishingly close to natural objects. In this respect, I would say that 

fractal geometry brought naturalness back to mathematics. Undoubtedly, mathematics 

has been a very effective tool in science and engineering, helping to describe natural 

phenomena (the motion of the planets in the solar system is a classic example) and to 

deliver real products (cars, airplanes, computers, radars, atomic bombs, etc.). However, 

to the lay person the connection between the abstract concepts of mathematics and real-

world applications may not be immediately obvious. For instance, a brief excursion into 

the sections of a library on physics, or any other discipline that has been amenable to a 

rigorous mathematical description, will reveal books full of graphics with shapes that 

tend to be smooth, such as straight lines, circles, parabolas or hyperbolas. But these are 

not the curves of most natural objects, as Mandelbrot (1983) reminded us. On the other 

hand, any book on fractals will most likely (proudly) exhibit computer generated images 

that are difficult to distinguish from natural objects or landscapes. If those smooth 

curves in books on physics were at some point seen as a sign of progress and modernity, 
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fractal geometry re-introduced “grainy, hydralike, in between, pimply, pocky, ramified, 

strange, tangled, tortuous, wiggly, wispy, wrinkled” shapes into contemporary scientific 

disciplines, and they may once again resurge as “modern”.  

The studies on how humans respond to fractals and non-fractal objects and designs have 

important implications to our well-being. So far, these studies have revealed that 

humans have an innate preference for fractals. Surely, different cultures have produced 

very different designs. However, the possible existence of unconscious universal 

preferences that are present in common patterns that can be reveal through fractals (or 

other methods) is tantalizing. Whether there are in fact such universals, and at which 

level, should not be taken uncritically, as recently showed about music by McDermott et 

al. (2016) (but see, e.g., Bowling et al., 2017). It is, nevertheless, an interesting 

hypothesis that deserves further research and where fractal geometry may show the 

inherent consilience in human endeavours. 
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